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Abstract
The second harmonic generation (SHG) in the asymmetric coupled quantum wells (ACQWs) is
studied theoretically for different widths of the right-well and the barrier. The analytical
expression of the SHG susceptibility is deduced by using the compact density matrix approach
and the iterative method. Numerical calculations are presented for typical GaAs/Alx Ga1−x As
ACQWs. The results show that the calculated SHG susceptibility in this coupled system can
reach a magnitude of 10−5 m V−1, 1–2 orders higher than that in single quantum systems.
Moreover, the SHG susceptibilities are not monotonic functions of the widths of the right-well
and the barrier, but have complex relationships with them. The calculated results also reveal
that by adjusting the widths of the right-well and the barrier respectively, a set of optimal
structural parameters can be found for obtaining a strong SHG susceptibility.

1. Introduction

In the past few years, nonlinear optical properties in the
low-dimensional semiconductor quantum systems, such as
quantum wells, quantum wires, and quantum dots, have
attracted much attention in both practical applications and
theoretical research. This is because the nonlinear effects can
be enhanced dramatically in these low-dimensional quantum
systems over those in bulk materials due to the existence
of a quantum-confinement effect. In addition the fast
development of growing technologies such as molecular-beam
epitaxy and metal-organic chemical vapor deposition has also
accelerated research in this area. Among the nonlinear optical
properties, more attention has been paid to the second-order
ones, such as second harmonic generation [1–12], optical
rectification [13–16], the electro-optic effect [17] and so
on. Because the magnitudes of the second-order nonlinear
susceptibility are usually stronger than those of higher-order
ones, studies in this area have more significance for the
practical applications.

1 Author to whom any correspondence should be addressed.

It is interesting that the second-order nonlinear suscepti-
bility vanishes in symmetric systems, because optical transi-
tions between the electronic states with the same parity are
not allowed. Therefore, to obtain a strong second-order op-
tical nonlinearity, it is necessary to break the inversion sym-
metry of the quantum systems. Some authors [5, 9, 14, 16]
have researched the second-order nonlinear effect in symmet-
ric quantum systems with incident electric field. Some oth-
ers have also studied the same effects in some asymmetric sin-
gle quantum systems, such as in semi-parabolic quantum sys-
tems [4, 13, 15, 17], in asymmetric step wells [1–3] and so on.
However, only a few authors [6–8, 18–23] have focused atten-
tion on researches into the nonlinear optical effects of asym-
metric coupled quantum systems, and a systematic study of the
second-order effects of optical nonlinearity in these systems is
still lacking. So the research in this field is still important both
theoretically and for practical applications.

In this paper, the second harmonic generation (SHG)
susceptibility in the GaAs/Alx Ga1−x As asymmetric coupled
quantum wells (ACQWs) is investigated. The construction of
this asymmetric system is shown in figure 1. We keep the
width of the left-well (denoted by the symbol WL) unchanged,
and restrict our attention to the influence of the widths of the
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Figure 1. Schematic diagram for electronic confined potential profile
and the first three bound energy levels in an asymmetric coupled
GaAs/Alx Ga1−x As quantum well.

right-well and the barrier (denoted by the symbols WR and WB,
respectively) on the SHG susceptibility.

This paper is organized as follows. In section 2,
the Hamiltonian, relevant eigenstates and eigenenergies
are discussed in the GaAs/Alx Ga1−x As ACQWs, and the
analytical expression of the SHG susceptibility is deduced
by the compact density matrix approach and an iterative
method. In section 3, numerical calculations for typical
GaAs/Alx Ga1−xAs ACQWs are performed, and the SHG
susceptibility as a function of WR and WB is plotted and
analyzed in detail. Finally, brief conclusions are given in
section 4.

2. Theory

Firstly, let us discuss the eigenstates and the eigenenergies
in ACQWs. For simplicity, we suppose an idealized ACQW
heterostructure model, where we neglect band nonparabolicity
and variable effective mass.

In the effective mass approximation, the electron
Hamiltonian in this ACQW is well described by

H = − h̄2

2m∗

[
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

]
+ V (z) , (1)

with

V (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V0, z < −(WL + WB/2),

−WB/2 � z � WB/2,

z > WB/2 + WR

0, elsewhere.

(2)

Here z represents the growth direction of this quantum well, h̄
is Planck’s constant, m∗ is the effective mass of the conduction-
band, and V0 is the profile of the conduction-band potential in
this quantum well, respectively. By solving the Schrödinger
equation Hψn,k(r) = en,kψn,k(r), the eigenfunctions ψn,k(r)
and the eigenenergies en,k are given by

ψn,k(r) = ϕn(z)uc(r)eik‖·r‖ , (3)

and

en,k = En + h̄2

2m∗ |k‖|2, (4)

respectively. Here, k‖ and r‖ are the wavevector and coordinate
in the xy plane and uc(r) is the periodic part of the Bloch
function in the conduction-band at k = 0. ϕn(z) and En are
the solutions of the one-dimensional Schrödinger equation

H0ϕn(z) = Eϕn(z), (5)

where H0 is the z component of the whole Hamiltonian H , and
is given by

H0 = − h̄2

2m∗
d2

dz2
+ V (z). (6)

By solving equation (5), the bound states can be given as
follows,

ϕ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A exp {kz}
B1 cos {k ′z} + B2 sin {k ′z}
C1 exp {−kz} + C2 exp {kz}
D1 cos {k ′z} + D2 sin {k ′z}
G exp {−kz}

(7)

with the wavevectors given by k = √
2m∗(V0 − E)/h̄ and

k ′ = √
2m∗E/h̄, where E is the corresponding eigenenergy,

and A, B1, B2,C1,C2, D1, D2 and G are the normalized
coefficients of the wavefunction. All of these normalized
coefficients and the eigenenergy E can be numerically solved
by the standard boundary condition of the electronic bound
state.

Next, the formula of the SHG susceptibility in ACQWs
will be deduced by the compact density matrix method and
an iterative procedure. Assuming a monochromatic incident
electromagnetic field E(t) = Ẽ exp {−iωt} + Ẽ exp {iωt} is
applied to the system with a polarization vector normal to the
quantum wells, the evolution of the one-electron density matrix
ρ is given by the time-dependent Schrödinger equation

∂ρi j

∂ t
= 1

ih̄

[
H0 − qz E(t), ρ

]
i j

− �i j (ρ − ρ(0))i j , (8)

where H0 is the Hamiltonian for this system without the
incident field E(t), q is the electronic charge, ρ(0) is the
unperturbed density matrix and �i j is the relaxation rate. For
simplicity, we will assume �i j = �0 = 1/T0 for i �= j .
Equation (8) is solved using the usual iterative method [1, 5]:

ρ(t) =
∑

n

ρ(n)(t) (9)

with

∂ρ
(n+1)
i j

∂ t
= 1

ih̄

{[
H0, ρ

(n+1)
]

i j
− ih̄�i jρ

(n+1)
i j

}

− 1

ih̄

[
qz, ρ(n)

]
i j

E(t). (10)

The electronic polarization of the square quantum wells can
be expanded as equation (9). We will restrict ourselves to
considering the first two orders, i.e.

P(t) = ε0

(
χ(1)ω Ẽeiωt + χ

(2)
2ω Ẽ2e2iωt

)
+c.c.+ε0χ

(2)
0 Ẽ2, (11)
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where χ(1)ω , χ
(2)
2ω and χ(2)0 denote the linear, second harmonic

generation, and optical rectification susceptibility, respectively.
ε0 is the vacuum permittivity. The electronic polarization of the
nth order is given by

P(n)(t) = 1

S
Tr(ρ(n)qz), (12)

where S is the area of interaction. By using the same compact
density matrix approach and the iterative procedure as [1]
and [16], the expression of SHG susceptibility per unit area
can be deduced finally, and is given as:

χ
(2)
2ω = q3

ε0

∑
i

∑
j

1

(2h̄ω + E ji)− ih̄� j i

×
∑

k

μi jμ jkμki

[
ρi − ρk

(h̄ω + Eki )− ih̄�ki

− ρk − ρ j

(h̄ω + E jk)− ih̄� jk

]
, (13)

where Elm = (El − Em) is the transition energy between the
lth and the mth sub-bands, μlm = 〈l|z|m〉 is dipole matrix
element, h̄ω is the incident photon energy and ρl is the surface
concentration of carriers in the lth sub-band.

In this paper, we mainly focus on the near-double-resonant
approximation of the SHG susceptibility, i.e. for h̄ω ≈ E21 ≈
E32. In this case, the equation (13) can be written simply as

χ
(2)
2ω = q3ρ1

ε0

μ12μ23μ31

(h̄ω − E21 − ih̄�0)(2h̄ω − E31 − ih̄�0)
, (14)

where ρ1 has been normalized to a volume density of carriers
as [1].

Obviously, the volume SHG susceptibility has a peak
value for 2h̄ω ≈ 2E21 ≈ E31 given by

χ
(2)
2ω,max = q3ρ1

ε0

μ12μ23μ31

h̄2�2
0

. (15)

3. Results and discussions

In order to find the relationships between the SHG
susceptibility and the parameters of size structure in the
GaAs/Alx Ga1−xAs ACQWs, the numerical calculations are
carried out in the present section. The parameters adopted in
our calculations are as follows [4, 5, 22]: m∗ = 0.067m0 (m0

is the free -electron mass), V0 = 228 meV (corresponding Al
concentration x = 0.3), ρ1 = 5 × 1024 m−3, T0 = 0.14 ps, and
ε0 = 8.85 × 10−12 F m−1.

In figure 2(a), the SHG susceptibility |χ(2)2ω | is plotted
as a function of the incident photon energy h̄ω for seven
different right-well widths, WR = 3, 4, 4.5, 4.791, 5, 5.5
and 7.5 nm, while WL and WB are kept at 10 and 2 nm,
respectively. It can be seen easily from the figure that, firstly,
the strength of the SHG susceptibility in the ACQWs can reach
the magnitude of 10−5 m V−1, which is 1–2 orders higher
than that in single quantum systems [5, 12]. This large SHG
effect is primarily attributed to the strong coupling between
the double wells. Secondly, the SHG susceptibilities are not a

(a)

(b)

Figure 2. (a) SHG susceptibility |χ(2)2ω | as a function of the photon
energy h̄ω for seven different widths of the right-well, WR = 3, 4,
4.5, 4.791, 5, 5.5 and 7.5 nm, with WL = 10 nm and WB = 2 nm.
(b) SHG susceptibility |χ(2)2ω | as a function of the right-well width WR

for WL = 10 nm, WB = 2 nm and h̄ω0 = 49.5 meV.

monotonic function of WR. To make this feature clearer, we
have plotted figure 2(b), which presents the SHG susceptibility
|χ(2)2ω | as a function of WR for WL = 10 nm, WB = 2 nm
and h̄ω0 = 49.5 meV. The two figures show that if WL and
WB are fixed, WR plays an important role in getting a large
|χ(2)2ω |. Only when WR is chosen as an optimal value, can the
largest |χ(2)2ω | be obtained. Thirdly, for thicker or thinner right-
well, the corresponding peak of |χ(2)2ω | becomes wider and even
two different peaks may appear. Finally, with the increase of
WR, the peak of |χ(2)2ω | has an obvious red-shift. For example,
when WR = 4 nm, the corresponding position of the peak
is at h̄ω = 52.6 meV, but when WR = 5.5 nm, the peak’s
position shifts to 47.2 meV. This behavior can be explained in
that with the increase of WR the quantum-confinement effect to
the electron decreases quickly, therefore, the energy levels of
this wider system become very close each other, i.e. the energy
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Figure 3. Geometric factor |μ12μ23μ31| of the SHG susceptibility
and the difference of the energy intervals |E31 − 2E21| as functions
of WR for WL = 10 nm and WB = 2 nm.

intervals are reduced, and as a result, the peak of |χ(2)2ω | appears
at the low-energy direction, i.e. suffers a red-shift.

To understand the above phenomena more clearly, it is
useful for us to study the dependence of the geometrical factor
|μ12μ23μ31| and the intervals of energies E21 and E31 on the
width of the right-well WR. Figure 3 shows |μ12μ23μ31| and
|E31 −2E21| as a function of WR respectively, for WL = 10 nm
and WB = 2 nm. From this figure, it can be observed that near
the double resonant region, i.e. |E31 − 2E21| is small enough
(corresponding WR is near to 4.791 nm), the geometric factors
are large, and not sensitive to the change of WR. So it is not
surprising to obtain stronger |χ(2)2ω | peaks near this region, as
shown in figure 2(a). Figure 3 also shows us that, far from the
double resonant region, i.e. the right-well is too wide or narrow,
there is a great difference between 2E21 and E31. Therefore, at
h̄ω ≈ E21 and h̄ω ≈ E31/2, the |χ(2)2ω | will have two different
maximum values, respectively. That is to say, the curve of
|χ(2)2ω | has two different peaks. Moreover, when WR shifts to
the double resonant region gradually, |E31 − 2E21| decreases
quickly. As a result, the two peaks are closer and closer, and at
some values of WR, they convert to one single wide peak. Close
to the double resonant region, because of |E31 − 2E21| ≈ 0,
this single peak becomes sharper and sharper.

In figure 4(a), |χ(2)2ω | is plotted as a function of the incident
photon energy h̄ω for five different barrier widths, WB =
1.5, 1.8, 2.1, 2.4 and 2.81 nm, with WL = 10 and WR =
5 nm. From this figure, it is clearly observed that the SHG
susceptibilities are also not a monotonic function of WB. This
important feature is shown more clearly in figure 4(b), which
presents |χ(2)2ω | as a function of the barrier width WB for WL =
10 nm, WR = 5 nm, and h̄ω0 = 48 meV. The two figures
show us that there is an optimal barrier width determining
the largest |χ(2)2ω | while WL and WR are kept unchanged. For
example, in figure 4(a), when the barrier width is chosen as
WB = 2.1 nm, the peak of |χ(2)2ω | can reach the maximum value
4.821×10−5 m V−1. Moreover, figure 4(a) also shows that the
peak of |χ(2)2ω | has a small blue-shift with the decrease of WB.
The physical origin of this behavior can be understood in that

(a)

(b)

Figure 4. (a) SHG susceptibility |χ(2)2ω | as a function of the photon
energy h̄ω for five different widths of the barrier, WB = 1.5, 1.8, 2.1,
2.4 and 2.81 nm, with WL = 10 nm and WR = 5 nm. (b) SHG
susceptibility |χ(2)2ω | as a function of the barrier width WB for
WL = 10 nm, WR = 5 nm and h̄ω0 = 48 meV.

with the decrease of WB, the coupling between the left-well
and the right-well can be strengthened greatly, which makes the
energy levels of this strong coupled quantum system separate
from each other, i.e. makes the energy intervals increase. As
a result, the peak of |χ(2)2ω | shifts towards the high-energy
direction, i.e. suffers a blue-shift. However, a more important
feature shown in figure 4(a) is that the largest peak value
of |χ(2)2ω | does not occur at WB = 2.81 nm, which is the
optimal width of the barrier for a double resonant system with
WL = 10 nm and WR = 5 nm, but at WB = 2.1 nm. In
order to explain this phenomenon, we have plotted figure 5,
which presents |μ12μ23μ31| and |E31 − 2E21| as functions of
WB for WL = 10 and WR = 5 nm. From this figure, it is
seen clearly that, when WB > 1.5 nm, the geometric factor
|μ12μ23μ31| has a rapid reduction as WB increases. Therefore,
when we keep the difference between E31 and 2E21 small
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Figure 5. Geometric factor |μ12μ23μ31| of the SHG susceptibility
and the difference of the energy intervals |E31 − 2E21| as functions
of WB for WL = 10 nm and WR = 5 nm.

enough (Under such a condition, |χ(2)2ω | mainly depends on the
geometric factor.) and choose WB < 2.81, we will get a much
larger value of the geometric factor, and accordingly obtain a
stronger peak of |χ(2)2ω | than that located at WB = 2.81 nm.

Comparing figure 5 with figure 3, we can see that if
WR and WB are changed in the regions as 4 nm < WR <

7 nm and 1.5 nm < WB < 4.5 nm, respectively, WR

primarily influences |E31 − 2E21| while WB primarily affects
|μ12μ23μ31|. Therefore, we can conclude that if WL is kept
unchanged, by adjusting WR and WB in an appropriate region,
respectively, an optimal system with an appropriate set of WR

and WB can be achieved for to obtain the largest value of |χ(2)2ω |.
Moreover, comparing figure 2(a) with figure 4(a), we can

see that increasing WR can lead to a small red-shift of the
peak of |χ(2)2ω |, while decreasing WB can result in a small blue-
shift of the peak. Therefore, it is expected that the small red-
shift will be effectively compensated by the small blue-shift
if we keep WL unchanged and vary WR (increasing it) and
WB (decreasing it) simultaneously. To confirm this view, we
have plotted figure 6 which shows |χ(2)2ω | as a function of the
incident photon energy h̄ω for three different sets of WR and
WB as (WR,WB) = (4.6 nm, 2.46 nm), (4.7 nm, 2.36 nm) and
(4.8 nm, 2.16 nm) with WL = 10 nm. From this figure we
can clearly see that while varying WR (increasing it) and WB

(decreasing it) simultaneously, some optimal sets of WR and
WB can be obtained which ensure that the red-shift induced by
increasing WR can be effectively compensated by the blue-shift
caused by decreasing WB.

4. Conclusion

In conclusion, we have presented an efficient study of
the second harmonic generation for a typical asymmetric
GaAs/Alx Ga1−xAs coupled quantum well. The calculations
mainly focus on the dependence of |χ(2)2ω | on the widths of the
right-well and the barrier. Our results show that, the theoretical
value of |χ(2)2ω | can reach a magnitude of 10−5 m V−1 in this

Figure 6. SHG susceptibility |χ(2)2ω | as a function of the incident
photon energy h̄ω for three different sets of WR and WB as
(WR,WB) = (4.6 nm, 2.46 nm), (4.7 nm, 2.36 nm) and
(4.8 nm, 2.16 nm) with WL = 10 nm.

coupled quantum system, which is 1–2 orders higher than
that in single quantum systems. We also find that the SHG
susceptibility is not a monotonic function of WR or WB, but has
complicated relationships with them. And the most important
feature is that we find the double-photon-resonant system
(i.e. E21 = E32) is not always the best system for obtaining the
largest value of |χ(2)2ω |. Based on this double-photon-resonant
system, we can get a much stronger peak of |χ(2)2ω | by adjusting
WB properly. Moreover, our results also reveal that if WL is
fixed but WR and WB is changed in an appropriate region, WR

primarily influences the energy levels of this coupled system,
while WB primarily affects the geometric factor. Therefore,
it is expected that an optimum system will be achieved by
choosing appropriate values of WR and WB to obtain a stronger
|χ(2)2ω |. More importantly, the calculated results also show
us that the small red-shift induced by increasing WR can be
effectively compensated by the small blue-shift caused by
decreasing WB simultaneously, while keeping WL unchanged.
Finally we hope these important conclusions can make a great
contribution to the experimental studies, have a significant
influence on improvements of optical devices, such as ultrafast
optical switches, and open up new opportunities for practical
exploration of the quantum-size effect on devices.
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